research

Noncommutative Harmonic Analysis, Sampling Theory and the Duflo Map in 2+1 Quantum Gravity

Abstract

We show that the ⋆\star-product for U(su2)U(su_2), group Fourier transform and effective action arising in [1] in an effective theory for the integer spin Ponzano-Regge quantum gravity model are compatible with the noncommutative bicovariant differential calculus, quantum group Fourier transform and noncommutative scalar field theory previously proposed for 2+1 Euclidean quantum gravity using quantum group methods in [2]. The two are related by a classicalisation map which we introduce. We show, however, that noncommutative spacetime has a richer structure which already sees the half-integer spin information. We argue that the anomalous extra `time' dimension seen in the noncommutative geometry should be viewed as the renormalisation group flow visible in the coarse-graining in going from SU2SU_2 to SO3SO_3. Combining our methods we develop practical tools for noncommutative harmonic analysis for the model including radial quantum delta-functions and Gaussians, the Duflo map and elements of `noncommutative sampling theory'. This allows us to understand the bandwidth limitation in 2+1 quantum gravity arising from the bounded SU2SU_2 momentum and to interpret the Duflo map as noncommutative compression. Our methods also provide a generalised twist operator for the ⋆\star-product.Comment: 53 pages latex, no figures; extended the intro for this final versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019