Schnabl recently found an analytic expression for the string field tachyon
condensate using a gauge condition adapted to the conformal frame of the sliver
projector. We propose that this construction is more general. The sliver is an
example of a special projector, a projector such that the Virasoro operator
\L_0 and its BPZ adjoint \L*_0 obey the algebra [\L_0, \L*_0] = s (\L_0 +
\L*_0), with s a positive real constant. All special projectors provide abelian
subalgebras of string fields, closed under both the *-product and the action of
\L_0. This structure guarantees exact solvability of a ghost number zero string
field equation. We recast this infinite recursive set of equations as an
ordinary differential equation that is easily solved. The classification of
special projectors is reduced to a version of the Riemann-Hilbert problem, with
piecewise constant data on the boundary of a disk.Comment: 64 pages, 6 figure