A framework is proposed that allows to write down field theories with a new
energy scale while explicitly preserving Lorentz invariance and without
spoiling the features of standard quantum field theory which allow quick
calculations of scattering amplitudes. If the invariant energy is set to the
Planck scale, these deformed field theories could serve to model quantum
gravity phenomenology. The proposal is based on the idea, appearing for example
in Deformed Special Relativity, that momentum space could be curved rather than
flat. This idea is implemented by introducing a fifth dimension and imposing an
extra constraint on physical field configurations in addition to the mass shell
constraint. It is shown that a deformed interacting scalar field theory is
unitary. Also, a deformed version of QED is argued to give scattering
amplitudes that reproduce the usual ones in the leading order. Possibilities
for experimental signatures are discussed, but more work on the framework's
consistency and interpretation is necessary to make concrete predictions.Comment: 20 page