research

On the Integrability and Chaos of an N=2 Maxwell-Chern-Simons-Higgs Mechanical Model

Abstract

We apply different integrability analysis procedures to a reduced (spatially homogeneous) mechanical system derived from an off-shell non-minimally coupled N=2 Maxwell-Chern-Simons-Higgs model that presents BPS topological vortex excitations, numerically obtained with an ansatz adopted in a special - critical coupling - parametric regime. As a counterpart of the regularity associated to the static soliton-like solution, we investigate the possibility of chaotic dynamics in the evolution of the spatially homogeneous reduced system, descendant from the full N=2 model under consideration. The originally rich content of symmetries and interactions, N=2 susy and non-minimal coupling, singles out the proposed model as an interesting framework for the investigation of the role played by (super-)symmetries and parametric domains in the triggering/control of chaotic behavior in gauge systems. After writing down effective Lagrangian and Hamiltonian functions, and establishing the corresponding canonical Hamilton equations, we apply global integrability Noether point symmetries and Painleveproperty criteria to both the general and the critical coupling regimes. As a non-integrable character is detected by the pair of analytical criteria applied, we perform suitable numerical simulations, as we seek for chaotic patterns in the system evolution. Finally, we present some Comments on the results and perspectives for further investigations and forthcoming communications.Comment: 18 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions