We present a simple model for the late time stabilization of extra
dimensions. The basic idea is that brane solutions wrapped around extra
dimensions, which is allowed by string theory, will resist expansion due to
their winding mode. The momentum modes in principle work in the opposite way.
It is this interplay that leads to dynamical stabilization. We use the idea of
democratic wrapping \cite{art5}-\cite{art6}, where in a given decimation of
extra dimensions, all possible winding cases are considered. To simplify the
study further we assumed a symmetric decimation in which the total number of
extra dimensions is taken to be Np where N can be called the order of the
decimation. We also assumed that extra dimensions all have the topology of
tori. We show that with these rather conservative assumptions, there exists
solutions to the field equations in which the extra dimensions are stabilized
and that the conditions do not depend on p. This fact means that there exists
at least one solution to the asymmetric decimation case. If we denote the
number of observed space dimensions (excluding time) by m, the condition for
stabilization is m≥3 for pure Einstein gravity and m≤3 for dilaton
gravity massaged by string theory parameters.Comment: Final versio