research

Equilibrium Positions, Shape Invariance and Askey-Wilson Polynomials

Abstract

We show that the equilibrium positions of the Ruijsenaars-Schneider-van Diejen systems with the trigonometric potential are given by the zeros of the Askey-Wilson polynomials with five parameters. The corresponding single particle quantum version, which is a typical example of "discrete" quantum mechanical systems with a q-shift type kinetic term, is shape invariant and the eigenfunctions are the Askey-Wilson polynomials. This is an extension of our previous study [1,2], which established the "discrete analogue" of the well-known fact; The equilibrium positions of the Calogero systems are described by the Hermite and Laguerre polynomials, whereas the corresponding single particle quantum versions are shape invariant and the eigenfunctions are the Hermite and Laguerre polynomials.Comment: 14 pages, 1 figure. The outline of derivation of the result in section 2 is adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019