We show that a general variant of the Wick theorems can be used to reduce the
time ordered products in the Gell-Mann & Low formula for a certain class on non
local quantum field theories, including the case where the interaction
Lagrangian is defined in terms of twisted products.
The only necessary modification is the replacement of the
Stueckelberg-Feynman propagator by the general propagator (the ``contractor''
of Denk and Schweda)
D(y-y';tau-tau')= - i
(Delta_+(y-y')theta(tau-tau')+Delta_+(y'-y)theta(tau'-tau)), where the
violations of locality and causality are represented by the dependence of
tau,tau' on other points, besides those involved in the contraction. This leads
naturally to a diagrammatic expansion of the Gell-Mann & Low formula, in terms
of the same diagrams as in the local case, the only necessary modification
concerning the Feynman rules. The ordinary local theory is easily recovered as
a special case, and there is a one-to-one correspondence between the local and
non local contributions corresponding to the same diagrams, which is preserved
while performing the large scale limit of the theory.Comment: LaTeX, 14 pages, 1 figure. Uses hyperref. Symmetry factors added;
minor changes in the expositio