Abstract

We investigate scalar perturbations from inflation in braneworld cosmologies with extra dimensions. For this we calculate scalar metric fluctuations around five dimensional warped geometry with four dimensional de Sitter slices. The background metric is determined self-consistently by the (arbitrary) bulk scalar field potential, supplemented by the boundary conditions at both orbifold branes. Assuming that the inflating branes are stabilized (by the brane scalar field potentials), we estimate the lowest eigenvalue of the scalar fluctuations - the radion mass. In the limit of flat branes, we reproduce well known estimates of the positive radion mass for stabilized branes. Surprisingly, however, we found that for de Sitter (inflating) branes the square of the radion mass is typically negative, which leads to a strong tachyonic instability. Thus, parameters of stabilized inflating braneworlds must be constrained to avoid this tachyonic instability. Instability of "stabilized" de Sitter branes is confirmed by the BraneCode numerical calculations in the accompanying paper hep-th/0309001. If the model's parameters are such that the radion mass is smaller than the Hubble parameter, we encounter a new mechanism of generation of primordial scalar fluctuations, which have a scale free spectrum and acceptable amplitude.Comment: 7 pages, RevTeX 4.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020