We show how Moore's observation, in the context of toroidal compactifications
in type IIB string theory, concerning the complex multiplication structure of
black hole attractor varieties, can be generalized to Calabi-Yau
compactifications with finite fundamental groups. This generalization leads to
an alternative general framework in terms of motives associated to a Calabi-Yau
variety in which it is possible to address the arithmetic nature of the
attractor varieties in a universal way via Deligne's period conjecture.Comment: 28 page