IAS: an IoT Architectural Self-adaptation Framework

Abstract

International audienceThis paper develops a generic approach to model control loops and their interac- tion within the Internet of Things (IoT) environments. We take advantage of MAPE-K loops to enable architectural self-adaptation. The system’s architectural setting is aligned with the adaptation goals and the components run-time situation and constraints. We introduce an integrated framework for IoT Architectural Self-adaptation (IAS) where functional control elements are in charge of environmental adaptation and autonomic control elements handle the functional system’s architectural adaptation. A Queuing Networks (QN) approach was used for modeling the IAS. The IAS-QN can model control levels and their interaction to perform both architectural and environmental adaptations. The IAS-QN was modeled on a smart grid system for the Melle-Longchamp area (France). Our architectural adaptation approach successfully set the propositions to enhance the performance of the electricity trans- mission system. This industrial use-case is a part of CPS4EU European industrial innovation pro ject

    Similar works