research

Dirac Equation in Scale Relativity

Abstract

The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows to recover quantum mechanics as mechanics on a non-differentiable (fractal) space-time. The Schr\"odinger and Klein-Gordon equations have already been demonstrated as geodesic equations in this framework. We propose here a new development of the intrinsic properties of this theory to obtain, using the mathematical tool of Hamilton's bi-quaternions, a derivation of the Dirac equation, which, in standard physics, is merely postulated. The bi-quaternionic nature of the Dirac spinor is obtained by adding to the differential (proper) time symmetry breaking, which yields the complex form of the wave-function in the Schr\"odinger and Klein-Gordon equations, the breaking of further symmetries, namely, the differential coordinate symmetry (dxμ↔−dxμdx^{\mu} \leftrightarrow - dx^{\mu}) and the parity and time reversal symmetries.Comment: 33 pages, 4 figures, latex. Submitted to Phys. Rev.

    Similar works

    Available Versions

    Last time updated on 12/11/2016
    Last time updated on 12/11/2016