Multifunctional behavior of bis-acylhydrazone: Real-time detection of moisture in organic solvents, halochromism and aggregation induced emission

Abstract

A versatile novel indenopyrazine/indenoquinoxaline appended acylhydrazones (1 and 2) have been designed and synthesized successfully. Compounds 1 and 2 are designed such that, it comprises of acylhydrazone, which is responsible for moisture detection via deprotonation of the original molecule, pyrazine, pyridine and hydrazone unit which is responsible for halochromism via protonation and deprotonation, further the integrated twisted molecular structure results in the aggregation-induced emission features. Successive treatment of Fˉ and moisture to compound 1 and 2 produce reversible colorimetric responses that are easily visualized by the naked eye. Further, the corresponding mechanism was effectively confirmed by 1H NMR spectral analysis. The inherent halochromic features of appended unique pyrazine and pyridine core in compounds 1 and 2 were studied by the sequential addition of trifluoroacetic acid (TFA) and triethylamine (TEA) which is authenticated by reversible colorimetric changes as well as absorption spectral studies. Compound 1 adopts a twisted scissor-like structure and due to multiple weak interactions results in an interesting supramolecular network. Furthermore, both compound 1 and 2 exhibits the aggregation-induced emission features in DMF/water mixture, which was expansively confirmed through DLS particle analysis and TEM images. The integration of three distinct features into a single molecule are scarce

    Similar works

    Full text

    thumbnail-image