Comparison of mathematical models : an application for evaluation of animal food

Abstract

ABSTRACT: The digestibility and degradation rates of food can be estimated through the in vitro gas production technique. The gas curves generated can be described by diverse mathematical models (exponential, logistic, and empirical). The objective of this work was to present some mathematical models commonly used to describe gas production curves and to review some statistical tools useful to evaluate their adjustment capacity. Two models, either a logistic or an empirical proposed by Schofield et al, and France et al, respectively, were used to fit the profiles of gas production of six forage species. The selected criteria for evaluation of their adjustment capacity were: 1) square means error (CME), 2) Akaike (AIC) or 3) Bayesian(BIC) information criteria, 4) coefficient of determination (R2), 5) residual analysis, and 6) Durban-Watson dosim (DW). The best models for evaluation of gas production are those that present the best balance between data adjustment capacity and biological coherence, being necessary their evaluation under the most varied experimental conditions, in order to choose the best model for each specific situation.RESUMEN: La digestibilidad y las tasas de degradación de los alimentos pueden ser estimadas a través de la técnica in vitro de producción de gases. Las curvas de producción de gases que se generan pueden ser descritas por diversos modelos matemáticos (exponenciales, logísticos, empíricos). El objetivo de este trabajo fue presentar algunos modelos matemáticos empleados para describir las curvas de producción de gases y las herramientas estadísticas que sirven para evaluar su capacidad de ajuste. Dos modelos, uno logístico propuesto por Schofield et al y uno empírico propuesto por France et a, fueron utilizados para ajustar los perfiles de producción de gases de seis especies forrajeras, y los criterios seleccionados para evaluar su capacidad de ajuste fueron: 1) el cuadrado medio del error (CME), 2) el criterio de información de Akaike (AIC), 3) el criterio de información bayesiano (BIC), 4) el coeficiente de determinación (R2), 5) el análisis de los residuos, y 6) la dócima de Durban-Watson (DW). Los mejores modelos son aquellos que presentan el mejor balance entre la capacidad de ajuste de los datos y la coherencia biológica, siendo necesaria su evaluación en las más variadas condiciones experimentales, a fin de escoger el mejor para cada situación

    Similar works