Fundamental and Applied Experimental Investigations of Corrosion of Steel by LBE under Controlled Conditions: Kinetics, Chemistry Morphology, and Surface Preparation
Advanced nuclear processes such as the transmutation of nuclear waste, fast reactors, liquid-metal-cooled reactors, and spallation neutron sources require advanced materials systems to contain them. The required structural materials must be stable in the presence of nonmoderating coolants. A prime candidate for such a coolant is Lead Bismuth Eutectic (LBE). Materials in these systems must be able to tolerate high neutron fluxes, high temperatures, and chemical corrosion. Unfortunately, LBE corrodes stainless steel.
The corrosive behaviors of structural materials in LBE are not well understood. The Russians have over 80 reactor-years experience with LBE coolant in their Alpha-class submarine reactors. The Russians found that the presence of small amounts of oxygen in the LBE significantly reduced corrosion, but a fundamental understanding is incomplete. The formation and breakdown of protective (or non-protective) oxide layers in a steel/LBE is a key materials question