Relevance of Porcine Stroke Models to Bridge the Gap from Pre-Clinical Findings to Clinical Implementation

Abstract

Altres ajuts: This research is supported by grants from the Fondo de Investigaciones Sanitarias-Instituto de Salud Carlos III (ISCIII) to A.D. that was susceptible to be co-financed by FEDER funds, and a grant from Agència de Gestió d'Ajuts Universitaris i de Recerca to A.D. and to T.G. The group has received funding from "la Caixa Foundation" CI15-00009, from the European Institute of Innovation and Technology (EIT), which receives support from the European Union's Horizon 2020 research and innovation programme, from the Fundación para la Innovación y la Prospectiva en Salud en España (FIPSE) program 3594-18. M.M.-S. is a recipient of a PFIS contract FI19/00174.In the search of animal stroke models providing translational advantages for biomedical research, pigs are large mammals with interesting brain characteristics and wide social acceptance. Compared to rodents, pigs have human-like highly gyrencephalic brains. In addition, increasingly through phylogeny, animals have more sophisticated white matter connectivity; thus, ratios of white-to-gray matter in humans and pigs are higher than in rodents. Swine models provide the opportunity to study the effect of stroke with emphasis on white matter damage and neuroanatomical changes in connectivity, and their pathophysiological correlate. In addition, the subarachnoid space surrounding the swine brain resembles that of humans. This allows the accumulation of blood and clots in subarachnoid hemorrhage models mimicking the clinical condition. The clot accumulation has been reported to mediate pathological mechanisms known to contribute to infarct progression and final damage in stroke patients. Importantly, swine allows trustworthy tracking of brain damage evolution using the same non-invasive multimodal imaging sequences used in the clinical practice. Moreover, several models of comorbidities and pathologies usually found in stroke patients have recently been established in swine. We review here ischemic and hemorrhagic stroke models reported so far in pigs. The advantages and limitations of each model are also discussed

    Similar works