Abstract A composite material of poly(phenylenevinylene) (PPV) doped by dye aggregates was prepared. A very efficient and temperature activated energy transfer (ET) from the PPV to the dye aggregates was attributed to F . orster ET accompanied by exciton diffusion. A clear complementary relation between the photoluminescence (PL) and electroluminscence (EL) images was observed for thin (15 nm) PPV-based OLEDs. So-called ''black spots'' in EL become bright ones when the photoluminescence of the same area was excited. This effect was attributed to the presence of an insulating layer between the polymer and aluminium.