Experimental investigation of fast electron transport through Kα imaging and spectroscopy in relativistic laser-solid interactions

Abstract

Abstract The study of the basic physical processes underlying the generation of fast electrons during the interaction of high-intensity short laser pulses with solid materials and the transport of these fast electrons through the target material are of great importance for the fast ignition concept for inertial confinement fusion and for the development of ultra-short X-ray sources. We report on the experimental investigation of fast electron transport phenomena by means of the spatial and spectral characterization of the X-ray emission from layered targets using bent crystal spectrometers and a new diagnostic technique based on a pinhole-camera equipped with a CCD detector working in single-photon regime for multi-spectral X-ray imaging The experiments were carried out at relativistic laser intensities, both in the longer (≃ps) pulse interaction regime relevant for fast ignition studie

    Similar works