Femtosecond Laser Ablation: Fundamentals and Applications

Abstract

Abstract Traditionally nanosecond laser pulses have been used for Laser-induced Breakdown Spectroscopy (LIBS) for quantitative and qualitative analysis of the samples. Laser produced plasmas using nanosecond laser pulses have been studied extensively since 1960s. With the advent of short and ultrashort laser pulses, there has been a growing interest in the applications of femtosecond and picosecond lasers for analysis of materials using LIBS and LA-ICP-MS. The fundamentals of laser ablation process using ultrashort laser pulses are not still fully understood. Pulse duration of femtosecond laser pulse is shorter than electron-to-ion energy transfer time and heat conduction time in the sample lattice. This results in different laser ablation and heat dissipation mechanisms as compared to nanosecond laser ablation. In this chapter, the focus will be on understanding the basics of femtosecond laser ablation processes including laser target interaction, ablation efficiency, ablation threshold, laser plasma interactions, and plume hydrodynamics. Analytical figures of merit will be discussed in contrast to nanosecond LIBS. Introduction Laser ablation (LA) and laser-produced plasmas (LPP) have been studied extensively for more than 50 years since the discovery of lasers in the 1960s. The physics involved in laser-plasma generation and subsequent evolution is very complex and contains many processes like heating, melting, vaporization, ejection of particles, and plasma creation and expansion. The laser ablation craters and plasmas produced are dependent on laser beam parameters such as pulse duration, energy, and wavelength, along with the target properties and surroundin

    Similar works