Abstract The incompressible Boussinesq equations not only have many applications in modeling fluids and geophysical fluids but also are mathematically important. The well-posedness and related problem on the Boussinesq equations have recently attracted considerable interest. This paper examines the global regularity issue on the 2D Boussinesq equations with fractional Laplacian dissipation and thermal diffusion. Attention is focused on the case when the thermal diffusion dominates. We establish the global wellposedness for the 2D Boussinesq equations with a new range of fractional powers of the Laplacian