Efficient Finite Element for Evaluation of Strain Concentrations

Abstract

ABSTRACT MARINTEK has developed software for detailed analysis of pipelines during installation and operation. As part of the software development a new coating finite element was developed in cooperation with StatoilHydro enabling efficient analysis of field joint strain concentrations of long concrete coated pipeline sections. The element was formulated based on sandwich beam theory and application of the Principle of Potential Energy. Large deformations and non-linear geometry effects were handled by a Co-rotated "ghost" reference description where elimination of rigid body motion was taken care of by referring to relative displacements in the strain energy term. The nonlinearity related to shear interaction and concrete material behaviour was handled by applying non-linear springs and a purpose made concrete material model. The paper describes the theoretical formulation and numerical studies carried out to verify the model. The numerical study included comparison between model and full-scale tests as well as between model and other commercial software. At last a 3000 m long pipeline was analysed to demonstrate the strain concentration behaviour of a concrete coated pipeline exposed to high temperature snaking on the seabed

    Similar works