untitled

Abstract

The present paper deals with the nonlinear dynamics of a Stockbridge damper. The nonlinearity is from damping and the geometric stretching of the messenger. The Stockbridge damper is modeled as two cantilevered beams with tip masses. The equations of motion and boundary conditions are derived using Hamilton's principle. The model is valid for both symmetric and asymmetric Stockbridge dampers. Explicit expressions are presented for the frequency equation, mode shapes, nonlinear frequency, and modulation equations. Experiments are conducted to validate the proposed model

    Similar works

    Full text

    thumbnail-image

    Available Versions