Nano Electro Mechanical Devices for Physical and Chemical Sensing

Abstract

The emergence of MEMS in consumer applications has dramatically increased market perspectives but also puts very strong constraints on cost and integration issues. Addressing these issues through further size reduction is not always relevant as it does not allow maintaining a correct signal to noise ratio (SNR) for the ubiquitous capacitive MEMS sensors. Different solutions are presented here according to the nature of the signal to be sensed: For physical sensors a new concept mixing a micron sized proof mass and a nano-sized detection structure is described. For chemical sensors, the reduction in size actually presents some advantages in terms of high resonant frequency, reduced gas damping, and high sensitivity to applied forces or added mass. Application of nano-resonators to gaz sensing is depicted. Developed originally at the end of the 80's, Micro Electro Mechanical Systems (MEMS) have by now given rise to a mature industry generating this year almost a 10 billion US$ turnover: Silicon micromachining techniques made possible the realisation of ultra-miniature and low cost sensors that allowed the deployment of airbags in cars (MEMS accelerometers are used there to measure the deceleration related to an accident), and more recently, new functions in smart phones. This deployment in large volume applications has triggered interest from large semiconductor industries (STM, TI, Freescale…) and a strong competition towards lower cost and higher integration: The new Grail of the industry is the realization of a 9 Degrees of Freedom sensor, combining the measurement in the 3 directions of space of acceleration, rotation speed and earth magnetic field. As inspired by the semiconductor industry, an obvious answer to these needs is to further decrease the size of the sensors, from Micro to Nano Electro Mechanical Systems (NEMS). However, even taking apart the technological challenges, this is not that simple as physics laws are not always in favour of scaling down: A simple homothetic size reduction does not allow maintaining a correct signal to noise ratio (SNR). As it will be seen here, different types of sensors require different approaches. Nano size detection for physical sensors. As mentioned before, inertial sensors are becoming one of the most ubiquitous sensor today, with applications in industrial, automotive or consumer applications. Further miniaturization is highly sought, as it allows both to decrease the cost (proportional to the surface of silicon) and increase integration (mandatory in portable applications such as smartphones, tablets…). However simple reduction of the seismic mass affects the sensitivity and reduces the nominal capacitance (95% of commercial MEM

    Similar works