NANO MANIPULATION WITH RECTANGULAR CANTILEVER OF ATOMIC FORCE MICROSCOPE (AFM) IN A VIRTUAL REALITY ENVIRONMENT

Abstract

One of the problems of working with AFM in nano environment is lack of simultaneous image feedback. For solving this problem, a virtual reality environment (VR) is designed. For this purpose, a nano manipulation environment is implemented and then, through examining and analyzing the forces existing between probe tips and nanoparticle, the process of nanoparticle driving is added to this environment. In the first step of nano manipulation operations, the dimensions of the base plan as well as the exact place of nanoparticles on that plan needs to be defined so that the user can identify the place of the origin and nanoparticles' destination. The second step in simulation is driving the nanoparticle. In this process, the AFM probe tip starts moving toward nanoparticle with a constant speed of V and after touching it and applying F resultant force from probe tip side on nano particles and increasing up to critical value (F ), it overcomes contract and frictional forces existing between the particle and base plane. In this moment, the probe tip starts moving along with nanoparticle and as a result the nanoparticle is transferred to the pre-determined place by the user. Thus the user may observe the manipulation process

    Similar works