Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 306: 772–777

Abstract

ABSTRACT Donepezil is a potent and selective acetylcholinesterase (AChE) inhibitor developed for the treatment of Alzheimer's disease. To elucidate whether donepezil shows neuroprotective action in addition to amelioration of cognitive deficits, we examined the effects of donepezil on glutamate-induced neurotoxicity using primary cultures of rat cortical neurons. A 10-min exposure of cultures to glutamate followed by a 1-h incubation with glutamatefree medium caused a marked loss of viability, as determined by Trypan blue exclusion. Glutamate neurotoxicity was prevented by 24-h pretreatment of donepezil in a concentration-dependent manner. Among AChE inhibitors examined, donepezil and certain AChE inhibitors such as tacrine and galanthamine showed potent neuroprotective action, although physostigmine did not affect glutamate neurotoxicity. Neuroprotective action of donepezil was antagonized by mecamylamine, a nicotinic acetylcholine receptor (nAChR) antagonist, but not by scopolamine, a muscarinic acetylcholine receptor antagonist. Furthermore, both dihydro-␤-erythroidine, an ␣4␤2-neuronal nAChR antagonist, and methyllycaconitine, an ␣7-nAChR antagonist, each also significantly antagonized the effect of donepezil. Next, we examined the effects of donepezil on glutamate-induced apoptosis. Exposure of 100 M glutamate to cortical neurons for 24 h induced apoptotic neuronal death and nuclear fragmentation. Donepezil for 24 h before and 24 h during glutamate exposure prevented nuclear fragmentation and glutamate-induced apoptosis. These results suggest that donepezil not only protects cortical neurons against glutamate neurotoxicity via ␣4␤2-and ␣7-nAChRs but also prevents apoptotic neuronal death

    Similar works

    Full text

    thumbnail-image

    Available Versions