Abstract TR.ON is the following game which can be played on any graph: Two players choose alternately a node of the graph subject to the requirement that each player must choose a node which is adjacent to his previously chosen node and such that every node is chosen only once. In this paper O(n) and O(ny'n) algorithms are given for deciding whether there is a winning strategy for the first player when TR.oN is played on a given tree, for the variants with and without specified starting nodes, respectively. The problem is shown to be both NP-hard and co-NP-hard for connected undirected graphs in general