Abstract-Swing leg retraction, the backward rotation of the swing leg prior to heel-strike, is known to have several advantages in legged locomotion. To achieve this motion, a hip torque is required at the end of the swing phase to brake the forward rotation of the leg and/or accelerate its backward motion. In walking, pre-emptive push-off of the stance leg also occurs at the end of the swing, so its relative timing with late-swing retracting torque influences gait energetics. To find the best relative timing between the stance leg's pushoff force and the swing leg retraction torque, we calculate their work-based energetics in a simple bipedal model using impulsive approximations and with the aid of the so-called overlap parameter that quantifies the relative order and the percentage overlap of the push-off and retraction impulses. By minimizing the energetic cost of the gait, we found that it is energetically favorable to start with the push-off force, and postpone braking the leg swing until completely after the push-off (impulsive force/torque). The implication for the more realistic non-impulsive cases is to apply the retraction torque at the very end of the push-off before heel-strike. We show that the results are valid for many other bipedal models, for both periodic and aperiodic gaits, and regardless of the actuator efficiencies for positive and negative work