THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS COMPUTATIONS OF FILM COOLING FOR THE LEADING EDGE REGION OF A TURBINE BLADE MODEL

Abstract

ABSTRACT Computations of film cooling are presented based on the geometry of a UBC experimental turbine blade model. This model has a semi-circlar leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. The computational domain follows the physical domain and includes the curved blade surface as well as the coolant regions in the circular coolant orifices. The injection orifices are inclined spanwise at 30 0 to the blade surface. A multi-zone curvilinear grid is used to simulate the complex configuration. Grids are generated by a block-structured elliptic grid generation method which represents exactly the curved blade surface as well as the circular injection orifices. Computations over the cooled turbine blade model are carried out for overall mass flow ratios of 0.52 and 0.97. The relative mass flow ratios from each orifice are specified to match experimental values. Density ratios of coolant to free stream were taken to be unity (constant density). Comparison of predicted film cooling effectiveness with experimental data showed reasonable agreement

    Similar works

    Full text

    thumbnail-image

    Available Versions