THE DIFFERENTIAL GAS TURBINE USING ELECTRIC TRANSMISSION

Abstract

ABSTRACT This paper describes studies of simple gas turbine engines integrated with electrical transmission components. Recent developments in high-speed lightweight electrical machines and compact power electronics have enabled alternators and motors to be produced which can be coupled directly to the shaft of a gas turbine without an intermediate gearbox. For applications which require a wide range of power outputs, a single-shaft gas turbine with a high speed alternator can be run at constant speed while varying the current drawn from the alternator. This combines the flexibility of operation of a separate power turbine with the simplicity of a single-shaft engine. With this arrangement, in traction use high torques are obtained at low speed, while near-constant engine efficiency is sustained to about 50% of the design power. In the differential engine, the mechanical linkage between the compressor and the turbine is replaced with an electrical linkage. The turbine drives an alternator, and part of the alternator power is taken by a highspeed motor to drive the compressor. The excess alternator power forms the output of the engine. The compressor and turbine are now able to run at different speeds, and their operating points can be separately optimised at different engine conditions. For such an engine, studies show that high efficiency can be maintained to low power levels

    Similar works