Shift in chicken intestinal gene association networks after infection with Salmonella

Abstract

A primary infection of Salmonella enteritidis causes a spatial-temporal dependent change in the gene expression patterns in the intestine of chickens (Gallus gallus). This is the result of a dynamic intestinal response to adapt to the altered environment and to optimize its ‘health’ and functionality under the new circumstances. By inferring gene association networks (GANs), the complexities of and changes in biological networks can be uncovered. Within such GANs highly interacting (hub) genes can be identified, which are supposed to be high-level regulators connected to multiple processes. By exploring the intestinal expression of genes differing between control and Salmonella infected chicken in a time-dependent manner differences in GANs were found. In control chickens more developmental processes were observed, whereas in infected chickens relatively more processes were associated to ‘defense/pathogen response’. Moreover the conserved protein domains of the identified hub genes in controls were nuclear-associated, whereas hub genes in infected chickens were involved in ‘cellular communication’. The shift in topology and functionality of the intestinal GANs in control and Salmonella infected animals and the identification of GAN-specific hubs is a first step to understand the complexity of biological networks and processes regulating intestinal health and functionality under normal and disturbed conditions

    Similar works

    Full text

    thumbnail-image