THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS m ® in an ASME Journal. Authorization to photocopy material for internal or personal use under circumstance not falling within the fair use provisions of the DAMAGE TOLERANCE BASED LIFE PREDICTION IN GAS TURBIN

Abstract

ABSTRACT A novel fracture mechanics approach has been used to predict crack propagation lives in gas turbine engine blades subjected to vibratory high cycle fatigue (HCF). The vibratory loading included both a resonant mode and a non-resonant mode, with one blade subjected to only the non-resonant mode and another blade to both modes. A life prediction algorithm was utilized to predict HCF propagation lives for each case. The life prediction system incorporates a boundary integral element (BIE) derived hybrid stress intensity solution which accounts for the transition from a surface crack to comer crack to edge crack. It also includes a derivation of threshold crack length from threshold stress intensity factors to give crack size limits for no propagation. The stress intensity solution was calibrated for crack aspect ratios measured directly from the fracture surfaces. The model demonstrates the ability to correlate predicted missions to failure with values deduced from fractographic analysis. This analysis helps to validate the use of fracture mechanics approaches for assessing damage tolerance in gas turbine engine components subjected to combined steady and vibratory stresses

    Similar works

    Full text

    thumbnail-image

    Available Versions