Benchmarking real-time distributed object management systems for evolvable and adaptable command and control applications

Abstract

Abstract This paper describes benchmarking for evolvable and adaptable real-time command and control systems Introduction MITRE's Evolvable Real-Time C3 initiative developed an approach that would enable current real-time systems to evolve into the systems of the future. We designed and implemented an infrastructure and data manager so that various applications could be hosted on the infrastructure. Then we completed a follow-on effort to design flexible adaptable distributed object management systems for command and control (C2) systems. Such an adaptable system would switch scheduling algorithms, policies, and protocols depending on the need and the environment. Both initiatives were carried out for the United States Air Force. One of the key contributions of our work is the investigation of real-time features for distributed object management systems. Partly as a result of our work we are now seeing various real-time distributed object management products being developed. In selecting a real-time distributed object management systems, we need to analyze various criteria. Therefore, we need benchmarking studies for realtime distributed object management systems. Although benchmarking systems such as Hartstone and Distributed Hartstone have been developed for middleware systems, these systems are not developed specifically for distributed object-based middleware. Since much of our work is heavily based on distributed objects, we developed benchmarking systems by adapting the Hartstone system. This paper describes out effort on developing benchmarks. In section 2 we discuss Distributed Hartstone. Then in section 3, we first provide background on the original Hartstone and DHartstone designs from SEI (Software Engineering Institute) and CMU (Carnegie Mellon University). We then describe our design and modification of DHartstone to incorporate the capability to benchmark real-time middleware in Section 4. Sections 5 and 6 describe the design of the benchmarking systems. For more details of our work on benchmarking and experimental results we refer to [MAUR98] and [MAUR99]. For background information of our work we refer t

    Similar works