Application of Tornado-flow Fundamental Hydro- dynamic Theory to the Study of Blood Flow in the Heart -Further Development of Tornado-like Jet Technology

Abstract

ABSTRACT It has been proved previously that the Tornado-like swirling flows have strictly ordered hydrodynamic structure which can be exhaustively described by using the exact solution of non-stationary Navier-Stokes and continuity equations for this class of flows The current study proposes a method of measurement and calculation of the flow structural parameters derived from the exact solution, using LV cavity casts morphometry in humans and dogs and Multislice computed tomography (MSCT) of LV in two patients without severe cardiac pathology. It has been shown that the dynamic expression of intracardiac trabeculae and instant shape of LV cavity within a complete cardiac cycle correspond closely to the stages of single Tornado-like jet evolution. Since the intraventricular trabeculae profile is streamlined continuously by the blood flow, it should determine the hydrodynamic flow structure as an ensemble of guiding vanes. Therefore it has been concluded that the intraventricular flow dynamics can be analyzed and quantified using the exact solution. Application of this analysis to the MSCT visualization of LV cavity dynamics has shown the validity of this approach, which may be used for clinical diagnostic purpose. A realistic mathematical model of intraventricular blood flow has been proposed and evaluated. The results showed a good agreement between the model and known cardiac anatomy and function

    Similar works