The developmental, physiological, neural, and genetical causes and consequences of frequency-dependent selection in the wild.

Abstract

Abstract We outline roles of frequency-dependent selection (FDS) in coadaptation and coevolutionary change. Coadaptation and coevolution occur because correlational selection (CS) and correlated evolution couple many traits. CS arises from causal interactions between traits expressed in two or more interactors, which invariably involve different traits (signalers-receivers). Thus, the causes of CS are due to FDS acting on trait interactions. Negative FDS, a rare advantage, is often coupled to positive FDS generating complex dynamics and FD cycles. Neural mechanisms of learning and perception create analogous routes by which traits are reinforced in cognitive and perceptual systems of interactors, substituting for positive FDS. FDS across all levels of biological organization is thus best understood as proximate causes that link interactors and shape genetic correlations within and among interactors on long timescales, or cognitive trait correlations within interactors on short timescales. We find rock-paper-scissors dynamics are common in nature

    Similar works