FOOTSTEP DETECTION AND CLASSIFICATION USING DISTRIBUTED MICROPHONES

Abstract

ABSTRACT This paper addresses footstep detection and classification with multiple microphones distributed on the floor. We propose to introduce geometrical features such as position and velocity of a sound source for classification which is estimated by amplitude-based localization. It does not require precise inter-microphone time synchronization unlike a conventional microphone array technique. To classify various types of sound events, we introduce four types of features, i.e., time-domain, spectral and Cepstral features in addition to the geometrical features. We constructed a prototype system for footstep detection and classification based on the proposed ideas with eight microphones aligned in a 2-by-4 grid manner. Preliminary classification experiments showed that classification accuracy for four types of sound sources such as a walking footstep, running footstep, handclap, and utterance maintains over 70% even when the signal-to-noise ratio is low, like 0 dB. We also confirmed two advantages with the proposed footstep detection and classification. One is that the proposed features can be applied to classification of other sound sources besides footsteps. The other is that the use of a multichannel approach further improves noise-robustness by selecting the best microphone among the microphones, and providing geometrical information on a sound source

    Similar works