Long-term potentiation is associated with changes in synaptic ultrastructure in the rat neocortex

Abstract

ABSTRACT Long-term potentiation (LTP) in the sensorimotor cortex of freely moving rats has been associated with changes in dendritic morphology and dendritic spine density. The current research examined changes in synaptic number and ultrastructure associated with LTP in this cortical region. LTP was induced over a 1 h period and the animals were sacrificed 2 h after the initial stimulation of the LTP group. Synapses within the terminal area of the apical dendrites from layer III pyramidal neurons were quantified by determining the total number of synapses per neuron, the number of excitatory and inhibitory contacts, number of synapses with different curvature subtypes, number of perforated synapses, and synaptic length. Several changes in synaptic morphology of excitatory synapses were revealed but no overall increase in the number of synapses per neuron was evident. Specifically, the induction of LTP was associated with an increased number of excitatory perforated and concave shaped synapses. Increased numbers of perforated concave synapses were also found to be significantly correlated with the degree of potentiation in the LTP animals. These and previous results suggest similar synaptic changes in both the cortex and hippocampus during the early phases of LTP maintenance and distinct synaptic changes during later phases of LTP maintenance. Synapse 59: 378-382, 2006.

    Similar works