Red foliage color reliably indicates low host quality and increased metabolic load for development of an herbivorous insect

Abstract

Abstract Plant chemical defense and coevolved detoxification mechanisms in specialized herbivorous insects are fundamental in determining many insect-plant interactions. For example, Brassicale plants protect themselves from herbivory by producing glucosinolates, but these secondary metabolites are effectively detoxified by larvae of Pierid butterflies. Nevertheless, not all Brassicales are equally preferred by these specialist herbivores. Female Pieris butterflies avoid laying eggs on anthocyanin-rich red foliage, suggesting red color is a visual cue affecting oviposition behavior. In this study, we reared P. brassicae larvae on green and red cabbage leaves, to determine whether foliage color reliably indicates host plant quality. We did not find a difference in survival rates or maximal larval body mass in the two food treatments. However, larvae feeding on red cabbage leaves exhibited significantly lower growth rates and longer durations of larval development. Interestingly, this longer development was coupled with a higher consumption rate of dry food matter. The lower ratio of body mass gain to food consumption in larvae feeding on red cabbage leaves was coupled with significantly higher (ca. 10 %) larval metabolic rates. This suggests that development on red foliage may incur an increased metabolic load associated with detoxification of secondary plant metabolites. Energy and oxygen allocation to detoxification could come at the expense of growth and thus compromise larval fitness as a result of extended development. From an evolutionary perspective, red foliage color may serve as an honest defensive cue, as it reliably indicates the plant's low quality as a substrate for larval development

    Similar works