Disposition and Drug-Drug Interaction Potential of Veliparib (ABT-888), a Novel and Potent Inhibitor of Poly(ADP-ribose) Polymerase

Abstract

ABSTRACT: The Veliparib absorption was high. Dosed radioactivity was widely distributed in rat tissues. The majority of drug-related material was excreted in urine as unchanged drug (approximately 54, 41, and 70% of the dose in rats, dogs, and humans, respectively). A lactam M8 and an amino acid M3 were two major excretory metabolites in animals. In the circulation of animals and humans, veliparib was the major drug-related component, and M8 was one of the major metabolites. Monooxygenated metabolite M2 was significant in the rat and dog, and M3 was also significant in the dog. Veliparib biotransformation occurred on the pyrrolidine moiety via formation of a lactam, an amino acid, and an N-carbamoyl glucuronide, in addition to oxidation on benzoimidazole carboxamide and sequential glucuronidation. In vitro experiments using recombinant human cytochrome P450 (P450) enzymes identified CYP2D6 as the major enzyme metabolizing veliparib with minor contributions from CYP1A2, 2C19, and 3A4. Veliparib did not inhibit or induce the activities of major human P450s. Veliparib was a weak P-glycoprotein (P-gp) substrate, showing no P-gp inhibition. Taken together, these studies indicate a low potential for veliparib to cause clinically significant P-gp or P450-mediated drug-drug interactions (DDIs). Overall, the favorable dispositional and DDI profiles of veliparib should be beneficial to its safety and efficacy

    Similar works