Nonconsumptive Effects of Predation and Impaired Chemosensory Risk Assessment on an Aquatic Prey Species

Abstract

Weak levels of acidity impair chemosensory risk assessment by aquatic species which may result in increased predator mortalities in the absence of compensatory avoidance mechanisms. Using replicate populations of wild juvenile Atlantic salmon (Salmo salar) in neutral and acidic streams, we conducted a series of observational studies and experiments to identify differences in behaviours that may compensate for the loss of chemosensory information on predation risk. Comparing the behavioural strategies of fish between neutral and acidic streams may elucidate the influence of environmental degradation on nonconsumptive effects (NCEs) of predation. Salmon in acidic streams are more active during the day than their counterparts in neutral streams, and are more likely to avoid occupying territories offering fewer physical refugia from predators. Captive cross-population transplant experiments indicate that at equal densities, salmon in acidic streams do not demonstrate relative decreases in growth rate as a result of their different behavioural strategies. Instead, altering diel activity patterns to maximize visual information use and occupying relatively safer territories appear sufficient to offset increased predation risk in acidic streams. Additional strategies such as elevated foraging rates during active periods or adopting riskier foraging tactics are necessary to account for the observed similarities in growth rates

    Similar works