Higher-Order Weakly Generalized Epiderivatives and Applications to Optimality Conditions

Abstract

The notions of higher-order weakly generalized contingent epiderivative and higher-order weakly generalized adjacent epiderivative for set-valued maps are proposed. By virtue of the higher-order weakly generalized contingent adjacent epiderivatives, both necessary and sufficient optimality conditions are obtained for Henig efficient solutions to a set-valued optimization problem whose constraint set is determined by a set-valued map. The imposed assumptions are relaxed in comparison with those of recent results in the literature. Examples are provided to show some advantages of our notions and results

    Similar works