KNAPSACK PROBLEMS WITH SETUPS

Abstract

RÉSUMÉ : We consider two variants of knapsack problems with setups arising as subproblems in a DantzigWolfe decomposition approach to more complex combinatorial optimization problems. In the multiple-class binary knapsack problem with setups, items are partitioned into classes whose use implies a setup cost and associated capacity consumption. Item weights are assumed to be a multiple of their class weight. The total weight of selected items and setups is bounded. The objective is to maximize the difference between the profits of selected items and the fixed costs incurred for setting-up classes. In the continuous knapsack problems with setups, each class holds a single item and a fraction of an item can be selected while incurring a full setup. The paper shows the extent to which classical results for the knapsack problem can be generalized to these variants. In particular, an extension of the branch-and-bound algorithm of Horowitz and Sahni is developed for problems with positive setup costs. Our direct approach is compared experimentally with the approach proposed in the literature consisting in converting the problem into a multiple choice knapsack with pseudo-polynomial size

    Similar works