Rarefaction and Non-equilibrium Effects in Hypersonic Flows about Leading Edges of Small Bluntness

Abstract

Abstract. A hypersonic flow about a cylindrically blunted thick plate at a zero angle of attack is numerically studied with the kinetic (DSMC) and continuum (Navier-Stokes equations) approaches. The Navier-Stokes equations with velocity slip and temperature jump boundary conditions correctly predict the flow fields and surface parameters for values of the Knudsen number (based on the radius of leading edge curvature) smaller than 0.1. The results of computations demonstrate significant effects of the entropy layer on the boundary layer characteristics

    Similar works