Abstract

Extended Abstract Electrospinning has been recognized as an effective and inexpensive technique for fabrication of long fibers from various materials including polymers, composites and biomacromolecules with diameters ranging from a few nanometers to few micrometers Polymer-based drug delivery systems are used to improve the therapeutic properties of drugs in a safer, effective and reliable manner Gelatin is a natural biopolymer derived from animal collagen, having a long history of safe use in pharmaceuticals, cosmetics as well as food products In the current work electrospun fibers were developed as a new system for the delivery and release of an anticancer agent doxorubicin via electrospinning technique. The morphology of the fibers was analyzed by scanning electron microscopy(SEM), fourier transform infrared spectroscopy (FTIR). The fibers were made from gelatin as a biodegradable polymer and the release of doxorubicin was followed by UV-vis spectroscopy in phosphate buffer of pH 7.4 at 25 °C and 37 °C. The release profiles from gelatin electrospun fiber mats were compared with casting films with the same composition

    Similar works