Action video game training reduces the Simon Effect

Abstract

Abstract A number of studies have shown that training on action video games improves various aspects of visual cognition including selective attention and inhibitory control. Here, we demonstrate that action video game play can also reduce the Simon Effect, and, hence, may have the potential to improve response selection during the planning and execution of goal-directed action. Non-game-players were randomly assigned to one of four groups; two trained on a first-person shooter game (Call of Duty) on either Microsoft Xbox or Nintendo DS, one trained on a visual training game for Nintendo DS, and a control group who received no training. Response times were used to contrast performance before and after training on a behavioral assay designed to manipulate stimulus-response compatibility (the Simon Task). The results revealed significantly faster response times and a reduced cost of stimulusresponse incompatibility in the groups trained on the first-person-shooter game. No benefit of training was observed in the control group or the group trained on the visual training game. These findings are consistent with previous evidence that action game play elicits plastic changes in the neural circuits that serve attentional control, and suggest training may facilitate goal-directed action by improving players' ability to resolve conflict during response selection and execution

    Similar works