Abstract Using game theory we investigate a new approach to formulate and solve optimal tolls with a focus on different policy objectives of the road authority. The aim is to gain more insight into determining optimal tolls as well as into the behavior of users after tolls have been imposed on the network. The problem of determining optimal tolls is stated and defined using utility maximization theory, including elastic demand on the travelers' side and different objectives for the road authority. Game theory notions are adopted regarding different games and players, rules and outcomes of the games played between travelers on the one hand and the road authority on the other. Different game concepts (Cournot, Stackelberg and social planner game) are mathematically formulated and the relationship between players, their payoff functions, and rules of the games are defined. The games are solved for different scenarios and different objectives for the road authority, using the Nash equilibrium concept. Using the Stackelberg game concept as being most realistic for road pricing, a few experiments are presented illustrating the optimal toll design problem subject to different pricing policies considering different objectives of the road authority. Results show different outcomes both in terms of optimal tolls as well as in payoffs for travelers. There exist multiple optimal solutions and the objective functions may have a non-continuous shape. The main contribution is the two-level separation between the network users and the road authority in terms of their objectives and influences