Investigations on Composite Flexural Behaviour with Inclusion of CNT Enhanced Silica Aerogel in Epoxy Nanocomposites

Abstract

Abstract. Growing of carbon nanotubes (CNT) on the surface of highly porous silica aerogel offers a means to tailor the mechanical properties between fiber and matrix interface of a composite. The growth of CNT on the silica aerogel surface was done using chemical vapour deposition (CVD) technique. In this study, the morphology of the produced CNT was investigated by Scanning Electron Microscope (SEM) for confirmation of CNT existence. The composite were then prepared by shear mixing technique. Flexural strength of the CNTSilAe/Epoxy nanocomposite were assessed as a function of CNT-SilAe concentration and dispersion in epoxy matrix. The flexural modulus and strength of epoxy composite increased significantly with inclusion of CNT-SilAe. The optimum loading of CNT-SilAe in epoxy composites was attained at 2 wt%, where the improvement in flexural strength and modulus were 8% and 11%, respectively

    Similar works

    Full text

    thumbnail-image

    Available Versions