Towards a more practical model for mixed criticality systems

Abstract

Abstract-Mixed Criticality Systems (MCSs) have been the focus of considerable study over the last six years. This work has lead to the definition of a standard model that allows processors to be shared efficiently between tasks of different criticality levels. Key aspects of this model are that a system is deemed to execute in one of a small number of criticality modes; initially the system is in the lowest criticality mode, but if any task executes for more than its predefined budget for this criticality level then a mode change is made to a higher criticality mode and all tasks of the lowest criticality level are abandoned (aborted). The initial criticality level is never revisited. This model has been useful in defining key properties of MCSs, but it does not form a useful basis for an actual implementation of a MCS. In this paper we consider the tradeoffs stemming from a consideration of what systems engineers require at run-time and the actual properties of the model that scheduling analysis guarantees. Alternative models are defined that allow low criticality tasks to continue to execute after a criticality mode change. The paper also addresses robust priority assignment

    Similar works