An algorithm for fast composition of weighted finite-state transducers

Abstract

Abstract In automatic speech recognition based on weighted-finite transducers, a static decoding graph HC • L • G is typically constructed. In this work, we first show how the size of the decoding graph can be reduced and the necessity of determinizing it can be eliminated by removing the ambiguity associated with transitions to the backoff state or states in G. We then show how the static construction can be avoided entirely by performing fast on-the-fly composition of HC and L • G. We demonstrate that speech recognition based on this on-the-fly composition approximately 80% more run-time than recognition based on the statically-expanded network R, which makes it competitive compared with other dynamic expansion algorithms that have appeared in the literature. Moreover, the dynamic algorithm requires a factor of approximately seven less main memory as the recognition based on the static decoding graph

    Similar works