Host plant quality, selection history and trade-offs shape immune responses ofManduca sexta.

Abstract

Immune defences are an important component of fitness. Yet susceptibility to pathogens is common, suggesting the presence of ecological and evolutionary limitations on immune defences. Here, we use structural equation modelling to quantify the direct effects of resource quality and selection history, and their indirect effects mediated via body condition prior to an immune challenge on encapsulation and melanization immune defences in the tobacco hornworm, Manduca sexta. We also investigate allocation trade-offs among immune defences and growth rate following an immune challenge. We found considerable variation in the magnitude and direction of the direct effects of resource quality and selection history on immune defences and their indirect effects mediated via body condition and allocation trade-offs. Greater resource quality and evolutionary exposure to pathogens had positive direct effects on encapsulation and melanization. The indirect effect of resource quality on encapsulation mediated via body condition was substantial, whereas indirect effects on melanization were negligible. Individuals in better condition prior to the immune challenge had greater encapsulation; however, following the immune challenge, greater encapsulation traded off with slower growth rate. Our study demonstrates the importance of experimentally and analytically disentangling the relative contributions of direct and indirect effects to understand variation in immune defences

    Similar works