Position and Force Control Based on Mathematical Models of Pneumatic Artificial Muscles Reinforced by Straight Glass Fibers

Abstract

Abstract -This paper reports on the position and force control of pneumatic artificial muscles reinforced by straight glass fibers. This type of artificial muscle has a greater contraction ratio and power and a longer lifetime than conventional McKibben types. However, these muscles are highly non-linear; hence, it is difficult to use them in a mechanical system. Furthermore, this actuator has a high compliance characteristic. Though this characteristic is useful for human interactions, the position and force of this actuator cannot be easily controlled. In this paper, a mathematical model of this type of artificial muscle is proposed, and the relationship between design parameters and control specifications is realized. In addition, the position and force based on the mathematical model are determined and applied to artificial muscle linearization

    Similar works

    Full text

    thumbnail-image

    Available Versions