This paper presents a Laser Induced Fluorescence (LIF) investigation of ion velocity profiles in the plume of the Fully Cylindrical Hall Thruster (FCHT) recently developed at the Princeton Plasma Physics Laboratory. These measurements confirm a previously measured ∼ 7% increase in the exhaust velocity when the cathode keeper draws an excess current (overrun mode). Furthermore, it was found that velocity directions in the plume remain relatively unchanged for the cusped and direct magnetic field configuration in both overrun and non-overrun modes. It is shown that the reported plume narrowing in the overrun mode is due to the shift of the acceleration and ionization regions inward toward the anode. This conclusion is supported by the potential profiles extracted from the LIF measurements, which indicate that in the overrun mode a larger fraction of potential fall occurs inside the thruster. Recent probe measurements further substantiate these findings [Raitses et al. , Phys. Plasma 16, 057106 (2009)]. The ratio of the potential fall experienced by ions inside the thruster over the actual potential drop within the thruster increases from 20% in the non-overrun regime with magnets in the direct configuration to 70% in the overrun mode with magnets in the cusped configuration. Magnetic field lines outside the thruster channel are found to be not equipotential, with the degree of equipotentiality gradually increasing at the thruster exit toward the edge